41 research outputs found

    Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors

    Get PDF
    Background and Aims: In an attempt to further investigate the role of cannabinoid (CB) system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist) and CB13 (a peripherally-restricted CB agonist) to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine. Methods and Results: AM841 (0.01, 0.1 and 1 mg/kg, i.p.) significantly decreased inflammation scores in dextran sulfate sodium (DSS)- and 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg), but significantly decreased inflammation score after central administration (0.1 mu g/animal). Conclusions: This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research

    Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors

    Get PDF
    Background and Aims: In an attempt to further investigate the role of cannabinoid (CB) system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist) and CB13 (a peripherally-restricted CB agonist) to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine. Methods and Results: AM841 (0.01, 0.1 and 1 mg/kg, i.p.) significantly decreased inflammation scores in dextran sulfate sodium (DSS)- and 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg), but significantly decreased inflammation score after central administration (0.1 mu g/animal). Conclusions: This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research

    New Insights into the Immunological Changes in IL-10-Deficient Mice during the Course of Spontaneous Inflammation in the Gut Mucosa

    Get PDF
    IL-10 is a regulatory cytokine that plays a major role in the homeostasis of the gut and this is illustrated by the fact that IL-10−/− mice develop spontaneous colitis. In this study, IL-10−/− mice were analyzed for immunological changes during colitis development. We found a reduced frequency of regulatory T cells CD4+CD25+Foxp3+ and higher frequency of activated T cells in the colon that precedes the macroscopic signs of the disease. Production of IL-17 and IFN-γ was higher in the colon. Colitis progression culminates with the reduction of CD4+LAP+ regulatory T cells in the intestine. Frequency of B1 cells and the secretory IgA production were both elevated. Despite these alterations, 16-week-old IL-10−/− mice could be rendered tolerant by a continuous feeding protocol. Our study provides detailed analysis of changes that precede colitis and it also suggests that oral tolerance could be used to design novel alternative therapies for the disease

    Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice With Colitis

    Get PDF
    BACKGROUND & AIMS: Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10(−/−) mice. METHODS: Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(−/−) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. RESULTS: Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. CONCLUSIONS: Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore